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Abstract
The RDM method has been applied to various small atoms
and molecular systems. We usedPQGT1 along with
newly formulatedT2′ as the best approximation to the
N -representability conditions, and solved accrately, within
theoretical criteria. Also we show some results of the one-
dimensional Hubbard model of high correlation limit using
multiple precision arithmetic version of solver [1]. See also
PP060: M. Fukuda’s poster for details.

Introduction
For the ground state energy and properties of many-
particle fermion systems within two-particle interactions,
the Hamiltonian of the system can be written as:

H =
∑

ij

vi
ja

†
iaj +

1

2

∑

i1i2j1j2

wi1i2
j1j2

a†i1a
†
i2aj2

aj1

wherev andw are the 1- and 2-particle operators anda and
a† are annihilation and creation operators, respectively. The
total energyE can be expressed by
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where|Ψ〉 is someN -particle state,γ andΓ are the first-
and second- reduced density matrices (1,2-RDMs) defined
by

γi
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The knowledge of the second-order reduced density matrix
(2-RDM) is known to be sufficient to describe all the phys-
ical quantities [2]. Besides, the number of variables in the
2-RDM is always four regardless of the number of particles
involved, whereas for the wavefunction this number scales
linearly. This fact motivated us to use the 2-RDM as a ba-
sic variable, and determine it directly instead of using the
wavefunction.

The RDM method
The ground state energyEg will be obtained by minimizing
the Hamiltonian with respect of using 1, 2-RDMs:

Eg = min
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We call this scheme as “the RDM method”. And subsidiary
condition called “N -representability condition” [3].

Γ(12|1′2′) =⇒ Ψ(1, 2, · · · , N)?

This condition is very important. Without that, obtained en-
ergy becomes toolow and 2-RDM becomes non-physical.

Known N -representability conditions
TheP , Q, G, T1 andT2 conditions state thatP , Q, G, T1
andT2- matrices defined as below are all positive semidef-
inite.
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Semidefinite programming
In 2001, Nakataet al. realized that the RDM method with
P , Q, G-conditions can be formulated for the SDPA (gen-
eral purpose semidefinite programming solver) [5], like fol-
lowing:















max 〈C, X〉
subject to〈Ap, X〉 = [b]p, (p = 1, 2, . . . ,m)

X � O,

and solved for many small atoms and molecules. SDPA has
nice features

• The accuracy of the obtained energy and 2-RDM are
guaranteed by duality theorem.

• Polynomial order algorithm (lighter than fullCI).

• Relatively good convergence.

Details and variant of this formulation can be found in
PP060: M. Fukuda’s poster.

N -representability is very difficult...
After a long efforts, the decision problem “Is a 2-RDMN -
representable or not?” is shown to be QMA-complete, thus
NP-hard [4]. We cannot solve this problem even we use
quantum computer! This fact shows us that we must choose
physically and/or chemically important approximations.

But, we know chemically/physically good ap-
proximations to N -representability!
In 2004, Zhao et al. implementedT1 and T2 N -
representability conditions implicitly stated in Eradahl’s
1978 paper [6]. This is a second breakthrough! This is suf-
ficient accuracy to doChemistry: comparable to CCSD(T)
at equilibrium geometry as well as ability of describing dis-
sociation limit. The qualities of approximations are sum-
marized as follows:

Method Correlation Dissociation limit
PQG 100 ∼ 120% yes

PQGT1T2100 ∼ 101% yes
CCSD(T) 100 ∼ 101% no

NEWT2′ N -representability condition
Braaamset al [8] and Mazziotti [7] formulatedT2′ condi-
tion as follows:

T2′ =
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)

.

This matrix hasT2-matrix and the 1-RDMγ at the diago-
nal, andX is defined as
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Results for atoms and molecules

SystemStateN r∆ EGT1T2∆ EGT1T2′∆ ECCSD(T ) ∆ EHF EFCI

C 3P 620−0.0004−0.0001 +0.00016+0.05202−37.73653
O 1D 820−0.0013−0.0012 +0.00279+0.10878−74.78733
Ne 1S 1020−0.0002−0.0001 −0.00005+0.11645−128.63881
O+

2
2Πg 1520−0.0022−0.0020 +0.00325+0.17074−148.79339

BH 1Σ+ 624−0.0001−0.0001 +0.00030+0.07398−25.18766
CH 2Πr 724−0.0008−0.0003 +0.00031+0.07895−38.33735
NH 1∆ 824−0.0005−0.0004 +0.00437+0.11495−54.96440
HF 1Σ+ 1424−0.0003−0.0003 +0.00032+0.13834−100.16031
SiH4

1A1 1826−0.0002−0.0002 +0.00018+0.07311−290.28490
F− 1S 1026−0.0003−0.0003 +0.00067+0.15427−99.59712
P 4S 1526−0.0001−0.0000 +0.00003+0.01908−340.70802
H2O 1A1 1028−0.0004−0.0004 +0.00055+0.14645−76.15576
GT1T2 :the RDM Method (P, Q, G, T1, T2 condition)
GT1T2′ :the RDM Method (P, Q, G, T1, T2′ conditions)
CCSD(T):Coupled cluster singles and doubles with perturbational treatment of triples
HF :Hartree-Fock
FCI :FullCI

Hubbard model and multiple precision arith-
metic version of SDPA (SDPA-GMP)
The Hubbard model is fundamental model of the electron
correlation (U/t controls the electron correlation).
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For the high correlation limit|U/t| → ∞, all states are
degenerated, and “double ” which has about 16 significant
digits

1.00000000000000001 ≃ 1

cannot handle such problems. Brute force method to
workaround this difficulty, we implemented SDPA-GMP
[9]. Using the GMP library (GNU Multiple Precision Arith-
metic Library), we can calculate in arbitrary precision. We
used 60 significant digits for this case:

1.000000000000000000000000000000000000000000000000001 ≃ 1.

The ground state energies of 1D Hubbard model
PBC, # of sites :4, # of electrons: 4, spin 0

U/t SDPA (double) SDPA-GMP (PQG) fullCI
10000.0 0 −1.1999998800000251× 10−3 −1.199999880 × 10−3

1000.0 −1.2 × 10−2 −1.1999880002507934× 10−2 −1.1999880002 × 10−2

100.0 −1.1991 × 10−1−1.1988025013717993× 10−1−1.19880248946 × 10−1

10.0 −1.1000 −1.0999400441222934 −1.099877772750
1.0 −3.3417 −3.3416748070259956 −3.340847617248

PBC, # of sites:6, # of electrons: 6, Spin 0
U/t SDPA (double) SDPA-GMP (PQGT1T2) fullCI

10000.0 0 −1.7249951195749525× 10−3 −1.721110121 × 10−3

1000.0 −1 × 10−2 −1.7255360310431304× 10−2 −1.7211034713 × 10−2

100.0 −1.730 × 10−1−1.7302157140594339× 10−1−1.72043338097 × 10−1

10.0 −1.6954 −1.6953843276854447 −1.664362733287
1.0 −6.6012 −6.6012042217806286 −6.601158293375

Conclusion
The RDM method withPQGT1T2′ were very good for the
ground state energies of atoms and molecules and theT2′

condition gave improvements in several sub-mHartree. We
also implemented the multiple arithmetic version of SDPA,
SDPA-GMP, which was used for the one dimensional Hub-
bard model and obtained extremely accurate energies. In
particular, for the Hubbard model with high correlation
limit, large |U/t|, we obtained at least sixteen significant
figures whereas the ordinal method gave only two to four
significant figures.
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